Total 4731 registered members
Top
Comment
sep
sep
sep
Email It!

Energy management

3,044 views

Energy management control center
Energy management control center

Energy management is the process of monitoring, coordinating, and controlling the generation, transmission, and distribution of electrical energy. The physical plant to be managed includes generating plants that produce energy fed through transformers to the high-voltage transmission network, interconnecting generating plants, and load centers. Transmission lines terminate at substations that perform switching, voltage transformation, measurement, and control. Substations at load centers transform to subtransmission and distribution levels. These lower-voltage circuits typically operate radially, i.e., no normally closed paths between substations through subtransmission or distribution circuits. (Underground cable networks in large cities are an exception.)

Since transmission systems provide negligible energy storage, supply and demand must be balanced by either generation or load. Production is controlled by turbine governors at generating plants, and automatic generation control is performed by control center computers remote from generating plants. Load management, sometimes called demand-side management, extends remote supervision and control to subtransmission and distribution circuits, including control of residential, commercial, and industrial loads.

Events such as lightning strikes, short circuits, equipment failure, or accidents may cause a system fault. Protective relays actuate rapid, local control through operation of circuit breakers before operators can respond. The goal is to maximize safety, minimize damage, and continue to supply load with the least inconvenience to customers. Data acquisition provides operators and computer control systems with status and measurement information needed to supervise overall operations. Security control analyzes the consequences of faults to establish operating conditions that are both robust and economical.

Energy management is performed at control centers (see picture below), typically called system control centers, by computer systems called energy management systems (EMS). Data acquisition and remote control is performed by computer systems called supervisory control and data acquisition (SCADA) systems. These latter systems may be installed at a variety of sites including system control centers. An EMS typically includes a SCADA ‘‘front-end’’ through which it communicates with generating plants, substations, and other remote devices.

Picture below illustrates the applications layer of modern EMS as well as the underlying layers on which it is built: the operating system, a database manager, and a utilities=services layer.

Layers of a modern EMS

Layers of a modern EMS (Energy management systems)

SCADA – Supervisory control and data acquisition

A SCADA system consists of a master station that communicates with remote terminal units (RTUs) for the purpose of allowing operators to observe and control physical plants.

Generating plants and transmission substations certainly justify RTUs, and their installation is becoming more common in distribution substations as costs decrease. RTUs transmit device status and measurements to, and receive control commands and setpoint data from, the master station.

Communication is generally via dedicated circuits operating in the range of 600 to 4800 bits=s with the RTU responding to periodic requests initiated from the master station (polling) every 2 to 10 s, depending on the criticality of the data.
The traditional functions of SCADA systems are summarized:

  • Data acquisition: Provides telemetered measurements and status information to operator.
  • Supervisory control: Allows operator to remotely control devices, e.g., open and close circuit breakers. A ‘‘select before operate’’ procedure is used for greater safety.
  • Tagging: Identifies a device as subject to specific operating restrictions and prevents unauthorized operation.
  • Alarms: Inform operator of unplanned events and undesirable operating conditions. Alarms are sorted by criticality, area of responsibility, and chronology. Acknowledgment may be required.
  • Logging: Logs all operator entry, all alarms, and selected information.
  • Load shed: Provides both automatic and operator-initiated tripping of load in response to system emergencies.
  • Trending: Plots measurements on selected time scales.

Since the master station is critical to power system operations, its functions are generally distributed among several computer systems depending on specific design. A dual computer system configured in primary and standby modes is most common. SCADA functions are listed below without stating which computer has specific responsibility.

  • Manage communication circuit configuration
  • Downline load RTU files
  • Maintain scan tables and perform polling
  • Check and correct message errors
  • Convert to engineering units
  • Detect status and measurement changes
  • Monitor abnormal and out-of-limit conditions
  • Log and time-tag sequence of events
  • Detect and annunciate alarms
  • Respond to operator requests to:
    • Display information
    • Enter data
    • Execute control action
    • Acknowledge alarms
  • Transmit control action to RTUs
  • Inhibit unauthorized actions
  • Maintain historical files
  • Log events and prepare reports
  • Perform load shedding

.

Related articles


Be nice and share this article with others! How to use all these nice buttons?

Del.icio.us Digg Mixx Reddit Technorati Linkedin Email this post Save to Google bookmarks Save to Yahoo Buzz Save to Reddit Save to Technorati