Total 4731 registered members
Top
Comment
sep
sep
sep
Email It!

Power quality

2,586 views

Power quality

Power quality

The term power quality seeks to quantify the condition of the electrical supply. It not only relates largely to voltage, but also deals with current and it is largely the corrupting effect of current disturbances upon voltage. Power quality can be quantified by a very broad range of parameters, some of which have been recognized and studied for as long as electrical power has been utilized. However, the advent of the term itself is more modern and it has created a useful vehicle for discussing and quantifying all factors that can describe supply quality. Power quality is yet another means of analysing and expressing electromagnetic compatibility (EMC), but in terms of the frequency spectrum, power quality charac- terizes mainly low-frequency phenomena. Perhaps because of this and because of the manner in which it affects electrical equipment, power quality has largely been dealt with by engineers with electrical power experience rather than those with an EMC expertise. In reality, resolving power problems can benefit from all available expertise, particularly since power quality disorders and higher frequency emissions can produce similar effects.

In 1989, the European Community defined the supply of electricity as a product, and it is therefore closely related to the provisions and protection of the EMC Directive (89/336/EEC), but in drawing a comparison between electricity and other manufactured product it is essential to recall a significant difference.

Electricity is probably unique in being a product which is manufactured, delivered and used at the same time. An electricity manufacturer cannot institute a batch testing process for example and pull substandard products out of the supply chain. By the time electricity is tested it will have been delivered and used by the customer whether it was of good quality or not.

Key parameters

The parameters that are commonly used to characterize supplies are listed in Table 1 together with the typical tolerance limits which define acceptable norms. Within Europe these power quality limits are defined by the EN 61000 series of standards in order to be compatible with the susceptibility limits set for equipment.

Table 1: Summary of power quality levels defined by EN 50160
.Power frequency (50Hz).Interconnected systems
.±1% (95% of week)
.+4% (absolute level)
.−6% (absolute level)
.Supply voltage variations on 230V nominal.±10% (95% of week based on
.10 min samples, rms)
.Rapid voltage changes.±5% Frequent
.±10% Infrequent
.Flicker.Pk=1.0 (95% of week)
.Supply voltage dips.Majority
.Few 10s
.Duration <1s
.Depth <60%
.Some locations
.Few 1000 per year of <15% depth
.Short interruptions.20–500 per year
.Duration 1s of 100% depth
.Long interruptions.10–50 per year
.Duration >180s of 100% depth
.Temporary power frequency overvoltage.<1.5kV
.Transient overvoltages.Majority
.<6kV
.Exceptionally
.>6kV
.Supply voltage unbalance.Majority
.<2%(95% of the week)
.Exceptionally
.>2%, <3%(95% of the week)
.Harmonic voltage distortion.THD <8%(95% of the week)
.Interharmonic voltage distortion.Under consideration
.Mains signalling.95 to 148.5kHz at up to 1.4Vrms (not in MV)

The more a supply deviates from these limits, the more likely it is that malfunction could be experienced in terminating equipment. However, individual items of equipment will have particular sensitivity to certain power quality parameters while having a wider tolerance to others. Table 2 provides examples of equipment and the power quality parameters to which they are particularly sensitive. Table 2 shows a preponderance of examples with a vulnerability to voltage dips. Of all the power quality parameters, this is probably the most troublesome to the manufacturing industry; and in the early 1970s, as the industry moved towards a reliance on electronic rather than electromagnetic controls, it was commonly observed how much more vulnerable the industrial processes were to supply disturbances.

Supply distortion (characterized by harmonics) is another power quality parameter that has received enormous attention, with many articles, textbooks and papers written on the subject. However, the modern practices that will be discussed later have reduced the degree to which this currently presents a problem. Other parameters tend to be much less problematic in reality, although that is not to say that perceptions sometimes suggest otherwise. Voltage surge and tran- sient overvoltage in particular are often blamed for a wide range of problems.

Table 2: Examples of sensitivity to particular power quality parameters
Equipment typeVulnerable power quality parameter Effect if exceededRang
.Induction motor .Voltage unbalance.Excessive rotor heating.<3%
.Power factor correction .capacitors.Spectral frequency .content.This is usually .defined .in terms of harmonic .distortion.Capacitor failure due to .excessive current flow or .voltage.Most sensitive if .resonance occurs.In resonant .conditions
.PLCs .Voltage dips.Disruption to the programmed .functionality.V tr
.Computing systems .Voltage dips.Disruption to the programmed .functionality.V
.Variable speed drives, .motor starters and .attracted .armature control .relays .Voltage dips.Disruption to the control system .causing shutdown. V
.Power transformers .Spectral frequency content of .load current.This is usually .defined in terms of harmonic .distortion.Increased losses leading to excessive temperature rise.At full load
.Devices employing .phase .control, such as .light .dimmers and .generator .automatic .voltage regulator .(AVRs) .Alteration in waveform zero .crossing due to waveform .distortion, causing multiple .crossing or phase asymmetry.Instability.Will depend .upon the r
.Motor driven .speed-.sensitive plant .Induction and synchronous .motor shaft speed are .proportional to supply .frequency. Some driven loads .are .sensitive to even small .speed variations.The motors themselves are .tolerant of small speed .variations.At high supply .frequencies (>10%) shaft .stresses may be excessive due .to high running speeds.Limits .depend on .the .sensitivity

However, very often this is a scapegoat when the actual cause cannot be identified. Even when correlation with switching voltage transients is correctly observed, the coupling introduced by poor wiring installations or bad earth bonding practices can be the real problem. Unlike the other power quality parameters, voltage transients have a high frequency content and will couple readily through stray capacitance and mutual inductance into neighbouring circuits. Coupling into closed conductor loops that interface with sensitive circuits such as screens and drain wires can easily lead to spurious events.

.

Related articles


Be nice and share this article with others! How to use all these nice buttons?

Del.icio.us Digg Mixx Reddit Technorati Linkedin Email this post Save to Google bookmarks Save to Yahoo Buzz Save to Reddit Save to Technorati
Tell us what you're thinking about article you just read.

Turn Your Thoughts Into Words

Tell us what you're thinking... we care about your opinion!
and oh, not to forget - if you want a picture to show with your comment, go get a free Gravatar!

*



Comments

3 Responses to “Power quality”

    Trackbacks

    Check out what others are saying about this post...
    1. linke.rs says:

      Power quality | CsanyiGroup…

      The term power quality seeks to quantify the condition of the electrical supply. It not only relates largely to voltage, but also deals with current and it is largely the corrupting effect of current disturbances upon voltage. Power quality can be quan…

    2. Power quality | CsanyiGroup…

      The term power quality seeks to quantify the condition of the electrical supply. It not only relates largely to voltage, but also deals with current and it is largely the corrupting effect of current disturbances upon voltage. Power quality can be quan…

    3. Story added…

      Your story was featured in Save this link dot Net! Here is the link to vote it up and promote it: http://www.savethislink.net/Science/Power_quality...