Total 4731 registered members
Email It!

Superconducting transformers


Superconducting transformers

100 kA Superconducting Transformer

In a superconducting transformer the windings, made of a high temperature superconducting material (HTS), are cooled with liquid nitrogen at about 77K so that the resistance is almost negligible. Load losses, even after adding losses from nitrogen processing, can be reduced by 50%.

The use of HTS transformers on a larger scale is economically justified and will become more attractive as cooling systems improve and the cost of liquid nitrogen production falls. Another important factor is progress in the processing of long lengths of HTS conductors.

These transformers have smaller weight and volume and are more resistant to overload but cost about 150% to 200% of the price of conventional transformers. So, in applications where weight is crucial (railway vehicles), transformers are much more “squeezed” (by forced cooling) to cut the weight. So efficiencies are much lower, and saving weight saves energy twice.

In our opinion, HTS transformers are suitable only in applications where the load losses make up a high proportion of the total losses, but are not yet ready for general use.

Related articles

Be nice and share this article with others! How to use all these nice buttons? Digg Mixx Reddit Technorati Linkedin Email this post Save to Google bookmarks Save to Yahoo Buzz Save to Reddit Save to Technorati
Tell us what you're thinking about article you just read.

Turn Your Thoughts Into Words

Tell us what you're thinking... we care about your opinion!
and oh, not to forget - if you want a picture to show with your comment, go get a free Gravatar!



One Response to “Superconducting transformers”


    Check out what others are saying about this post...
    1. [...] With superconducting transformers, connected as directional couplers, and using perfect loads that consume electrical energy distilland, of seawater, hydrogen and oxygen, is unnecessary to find a way of fault interrupt to the transmission of large amounts of electricity. [...]