Total 4731 registered members
Busbar Technical Specification

Busbar Technical Specification

Copper busbars are normally part of a larger generation or transmission system. The continuous rating of the main components such as generators, transformers, rectifiers, etc., therefore determine the nominal current carried by the busbars but in most power systems a one to four second short-circuit current has to be accommodated.

The value of these currents is calculated from the inductive reactances of the power system components and gives rise to different maximum short-circuit currents in the various system sections.

Performance under Short-circuit Conditions

Busbar trunking systems to BS EN 60439-2 are designed to withstand the effects of short-circuit currents resulting from a fault at any load point in the system, e.g. at a tap off point or at the end of a feeder run.

Rating under Short-circuit Conditions

The withstand ability will be expressed in one or more of the following ways:

  1. short-time withstand rating (current and time)
  2. peak current withstand rating
  3. conditional short-circuit rating when protected by a short-circuit protective device (s.c.p.d.)

These ratings are explained in more detail:

1. Short-time Withstand Rating

This is an expression of the value of rms current that the system can withstand for a specified period of time without being adversely affected such as to prevent further service. Typically the period of time associated with a short-circuit fault current will be 1 second, however, other time periods may be applicable.

The rated value of current may be anywhere from about 10kA up to 50kA or more according to the construction and thermal rating of the system.

2. Peak Current Withstand Rating

This defines the peak current, occurring virtually instantaneously, that the system can withstand, this being the value that exerts the maximum stress on the supporting insulation.

In an A.C. system rated in terms of short-time withstand current the peak current rating must be at least equal to the peak current produced by the natural asymmetry occurring at the initiation of a fault current in an inductive circuit. This peak is dependent on the power-factor of the circuit under fault conditions and can exceed the value of the steady state fault current by a factor of up to 2.2 times.

3. Conditional Short-circuit Rating

Short-circuit protective devices (s.c.p.ds) are commonly current-limiting devices; that is they are able to respond to a fault current within the first few milliseconds and prevent the current rising to its prospective peak value. This applies to HRC fuses and many circuit breakers in the instantaneous tripping mode. Advantage is taken of these current limiting properties in the rating of busbar trunking for high prospective fault levels. The condition is that the specified s.c.p.d. (fuse or circuit breaker) is installed up stream of the trunking. Each of the ratings above takes into account the two major effects of a fault current, these being heat and electromagnetic force.

The heating effect needs to be limited to avoid damage to supporting insulation. The electromagnetic effect produces forces between the busbars which stress the supporting mechanical structure, including vibrational forces on A.C. The only way to verify the quoted ratings satisfactorily is by means of type tests to the British Standard.

Type Testing

Busbar trunking systems are tested in accordance with BS EN 60439-2 to establish one or more of the short circuit withstand ratings defined above. In the case of short-time rating the specified current is applied for the quoted time. A separate test may be required to establish the peak withstand current if the quoted value is not obtained during the short-time test. In the case of a conditional rating with a specified s.c.p.d. the test is conducted with the full prospective current value at the trunking feeder unit and not less than 105% rated voltage, since the s.c.p.d. (fuse or circuit breaker) will be voltage dependent in terms of let through energy.


It is necessary for the system designer to determine the prospective fault current at every relevant point in the installation by calculation, measurement or based on information provided e.g. by the supply authority. The method for this is well established, in general terms being the source voltage divided by the circuit impedance to each point. The designer will then select protective devices at each point where a circuit change occurs e.g. between a feeder and a distribution run of a lower current rating. The device selected must operate within the limits of the busbar trunking short-circuit withstand.

The time delay settings of any circuit breaker must be within the specified short time quoted for the prospective fault current. Any s.c.p.d. used against a conditional short-circuit rating must have energy limitation not exceeding that of the quoted s.c.p.d. For preference the s.c.p.d. recommended by the trunking manufacturer should be used.

Voltage Drop

The requirements for voltage-drop are given in BS 7671: Regulation 525-01-02. For busbar trunking systems the method of calculating voltage drop is given in BS EN 60439-2 from which the following guidance notes have been prepared.

Voltage Drop

Figures for voltage drop for busbar trunking systems are given in the manufacturer’s literature.

The figures are expressed in volts or milli-volts per metre or 100 metres, allowing a simple calculation for a given length of run.

The figures are usually given as line-to-line voltage drop for a 3 phase balanced load.

The figures take into account resistance to joints and temperature of conductors and assume the system is fully loaded.

Standard Data

BS EN 60439-2 requires the manufacturer to provide the following data for the purposes of calculation, where necessary:

R20 the mean ohmic resistance of the system, unloaded, at 20ºC per metre per phase

X the mean reactance of the system, per metre per phase

For systems rated over 630A:

RT the mean ohmic resistance when loaded at rated current per metre per phase


In general the voltage drop figures provided by the manufacturer are used directly to establish the total voltage drop on a given system; however this will give a pessimistic result in the majority of cases.

Where a more precise calculation is required (e.g. for a very long run or where the voltage level is more critical) advantage may be taken of the basic data to obtain a more exact figure.

  1. Resistance – the actual current is usually lower than the rated current and hence the resistance of the conductors will be lower due to the reduced operating temperature.
    Rx = R20 [1+0.004(Tc - 20)] ohms/metre and Tc is approximately Ta + Tr

    where Rx is the actual conductor resistance

    Ta is the ambient temperature

    Tr is the full load temperature rise in ºC (assume say 55ºC)

  2. Power factor – the load power factor will influence the voltage drop according to the resistance and reactance of the busbar trunking itself.
    The voltage drop line-to-line ( Δv) is calculated as follows:

    Δv = √ 3 I (R x cos Φ + X sin Φ) volts/metre

    where I is the load current

    Rx is the actual conductor resistance (Ω/m)

    X is the conductor reactance (Ω/m)

    Cos Φ is the load power factor

    sin Φ = sin (cos-1 Φ )

  3. Distributed Load – where the load is tapped off the busbar trunking along its length this may also be taken into account by calculating the voltage drop for each section. As a rule of thumb the full load voltage drop may be divided by 2 to give the approximate voltage drop at the end of a system with distributed load.
  4. Frequency – the manufacturers data will generally give reactance (X) at 50Hz for mains supply in the UK. At any other frequency the reactance should be re-calculated.
    Xf = x F/50
    where Xf is the reactance at frequency F in Hz


Source: Siemens Barduct Busbar Specification


Related articles

EES Kvalitet električne energije - viši harmonici (prvi deo)

EES Kvalitet električne energije - viši harmonici (prvi deo)

Prisustvo velikog broja nelinearnih potrošača u distributivnim mrežama dovodi do niza negativnih efekata koji se odražavaju kako na samu mrežu tako i na ostale priključene potrošače.

Zajednički interes potrošača i proizvođača električne energije je poslednjih godina doveo u žižu interesovanja probleme vezane za kvalitet električne energije, odnosno sadržaj harmonika u distributivnoj mreži i druge aspekte kvaliteta električne energije (neprekidnost napajanja, prisustvo kratkotrajnih fluktuacija i distorzija,…).

Danas je u svetu pred proizvođače i projektante uređaja energetske elektronike postavljen čitav niz standarda i preporuka iz oblasti kvaliteta električne energije. Tradicionalno se smatralo da je kvalitet električne energije u stvari pouzdanost,odnosno nepostojanje trajnih prekida u snabdevanju električnom energijom, dok moderno shvatanje kvaliteta električne energije podrazumeva i sigurno (neprekidno) napajanje i fizički kvalitet napona. Problemi neprekidnosti napajanja se uglavnom rešavaju u toku postupka planiranja i izgradnje mreže, dok je problem fizičkog kvaliteta napona usko vezan za eksploataciju. Dominantan uticaj na fizički kvalitet napona imaju nelinearni potrošači (uređaji energetske elektronike, zasićene električne mašine,elektrolučne peći, itd…),tranzijentne pojave usled komutacija u sistemu (rad prekidača),rad elektroenergetskog sistema na granicama mogućnosti, itd…

Narušavanje kvaliteta električne energije podrazumeva narušavanje osnovnih parametara napona u ustaljenim ili prelaznim režimima i deformaciju talasnih oblika. Osnovni parametri napona su njegova efektivna vrednost, frekvencija i simetrija faznih napona.Dalje će biti razmatrani standardi vezani za sadržaj viših harmonika kako napojnog napona tako i struje koju potrošač uzima, dok drugi aspekti kvaliteta električne energije se neće razmatrati.

Viši harmonici

Napon viših harmonika je sinusni napon, čija je frekvencija celobrojni umnožak frekvencije osnovnog harmonika.Viši harmonici su nepoželjni u mrežama, jer se zbrajaju na osnovni talas i izobličuju ga, što uzrokuje problem u napajanju osetljivih potrošača, npr. medicinske opreme,koja zahteva čisti sinusni napon.

Slika 2.Talasni oblici napona prvog,petog i sedmog harmonika

Slika 2.Talasni oblici napona prvog,petog i sedmog harmonika

Dopuštene vrednosti viših harmonika (h od 2 do 40) tablično se prikazuju, i to:

  • pojedinačno, njihovim amplitudama (Uh), svedenim na amplitudu osnovnog harmonika  (U1),
  • zajednički, pomoću ukupnog sadržaja viših harmonika: THD (eng. Total Harmonic Distortion –    ukupno harmonijsko izobličenje), koje se izračunava kao:
    formula 1

Tokom svakog desetminutnog intervala vrednost THD-a mora biti < 8% vrednosti prvog harmonika, dok vrednosti pojedinih harmonika mogu imati vrednosti najčešće u pojasu od 0,5% (npr. od 6., do 24. harmonika) do 6% (npr. za “poznati” 5. harmonik) od vrednosti prvog harmonika.Više harmonike u mrežnom naponu najčešće proizvode viši harmonici struja nelinearnih opterećenja potrošača, koji su priključeni na različitim nivoima distributivne mreže. Ti viši harmonici struje opterećenja stvaraju na impedansama unutar distributivne mreže odgovarajuće više harmonike napojnog napona. S druge strane, sve veća primena pretvarača frekvencije i sličnih upravljačkih uređaja utiče na povećanje vrednosti međuharmonika, čije se dopuštene vrednosti u okviru norme EN 50160 još razmatraju.

U pojedinim situacijama i međuharmonici malih intenziteta izazivaju treperenje (flikere) ili smetnje u sistemu mrežnog tonfrekventnog upravljanja.

Merenje ukupnog harmonijskog izobličenja napona

Za izračunavanje  THD U   koriste se izmerene (RMS) vrednosti svakog od prvih 40 harmonika (Un) i vrednost nazivnog napona (osnovni harmonik), koja prema normi EN 50160 iznosi npr.: U1 = 220 V, a prema jednačini:

formula 2

Pomnoženo sa 100%, THD U % ne sme biti veće od 8% vrednosti nazivnog napona. Ta jednačina u skladu je sa normom EN 61000-4-7.

Izračunavanje ukupnoga harmonijskog izobličenja napona i struje

Za izračunavanje THD U i THD I,  primenjuju se sledeće jednačine:

formula 3

Pri čemu su:
Urms – efektivna vrednost (RMS – Root Mean Square) ukupnog napona
U1 – efektivna (RMS) vrednost napona osnovnog harmonika
Irms – efektivna vrednost ukupnog signala struje
I1 – RMS vrednost struje osnovnog harmonika (nazivna vrednost signala na 50 Hz).

Izvori viših harmonika

Izvori viših harmonica su:

  • Prekidačke napojne jedinice
  • Elektronske prigušnice za fluo cevi
  • Regulisani elektromotorni pogoni
  • Besprekidna napajanja
  • Energetski ispravljači i pretvarači
  • Transformatori sa nelinearnim magnećenjem
  • Elektrolučne peći
  • Indukcione peći
  • Aparati za elektrolučno zavarivanje
Slika 3.1 Šema trofaznog ispravljača | Slika 3.2. Talasni oblik struje trofaznog ispravljača

Slika 3.1 Šema trofaznog ispravljača | Slika 3.2. Talasni oblik struje trofaznog ispravljača


Slika 3.5. Talasni oblici struje:

Slika 3.5. Talasni oblici struje: a) magnećenja transformatora,b) hladnjaka zamrzivača,c) klima uređaja,d) jednofaznog pretvarača sa sklopnim načinom rada,e) fluorescentne cevi sa elektromagnetnom prigušnicom,d) fluorescentne cevi sa elektronskom prigušnicom

Problemi zbog viših harmonika

Problemi koji u elektroenergetskom sistemu nastaju zbog prisustva viših harmonika su brojni i ovde će biti navedeni samo neki, kao što su:

Manja iskoristivost snage. Mrežni kablovi su dimenzionisani i osigurani na osnovu struje koju mogu sigurno isporučiti. Pošto mali faktor snage povećava prividnu struju iz izvora, iznos korisne snage koju može povući kolo je smanjen zbog toplotnih ograničenja.
Enormno smanjenje raspoložive snage izazvano je ili faznim pomakom ili distorzijom.

Troškovi distribucije. Ako postoji mnoštvo opterećenja sa malim faktorom snage, postavljaju se zahtevi za dodatnim proizvodnim i distributivnim kapacitetima. Troškovi, rastu proporcionalno sa inverznom vrednošću faktora snage. Gubici u disipativnim elementima (žice i namotaji transformatora) proporcionalni su kvadratu prividne struje pa troškovi za obezbeđenje ove disipirane snage su takođe u inverznoj vezi sa faktorom snage. Brojila električne energije registrovaće samo aktivnu snagu pa korisnici ne plaćaju reaktivnu snagu.

Distorzija napona. Impedanse realnih izvora su konačne. Kablovi su sve tanji prema krajnjim potrošačima električne energije. Mali preseci provodnika u uređajima i velika strujna distorzija utiču na oblik napona i on postaje nesinusoidan.Distorzija napona izaziva probleme u radu napojnih jedinica i drugih obližnjih uređaja spojenih na isti izvor.

Trofazni sistemi. Nesimetrično opterećenje izaziva neželjene struje u neutralnom provodniku. Ali, čak i kod potpuno simetrčnog opterećenja koje generiše više harmonike, harmonijski sadržaj će se pojaviti u neutralnom provodniku ( to su tzv. harmonici trećeg reda, 3-ći, 6-ti, 9-ti itd.).
Prethodno nabrojani negativni efekti koje izaziva distorzija mrežne struje i viši harmonici, doveli su do potrebe za postavljanjem ograničenja na strujne harmonike koje u mreži izazivaju priključeni uređaji.

Metode za neutralisanje viših harmonika

Da bi se harmonijski problem smanjio ili eliminisao postoji nekoliko osnovnim rešenja:

  • smanjenje intenziteta harmonijskih struja
  • postavljanje filtera
  • popravka faktora snage

Metode smanjenja intenziteta harmonijskih struja

Metode smanjenja intenziteta harmonijskih struja obično podrazumevaju menjanje načina rada pogona, koji generišu harmonike. Takav pristup je teško praktično izvesti, jer to može da utiče na kompletan proizvodni proces, odnosno moguće je jedino u fazi projektovanja.
Neka od rešenja koja se koriste pri ograničavanju viših harmonika u fazi projektovanja su:

  • Izmeštanje nelinearnih prijemnika što dalje od osetljive opreme.Slika 5. Izmeštanje nelinearnih prijemnika
    Slika 5. Izmeštanje nelinearnih prijemnika
  • Grupisanje nelinearnih prijemnika,koji se priključuju na odvojene sabirnice.
    Slika 5.1. Priključenje više nelinearnih prijemnika
    Slika 5.1. Priključenje više nelinearnih prijemnika
  • Instaliranje više transformatora,jedni napajaju nelinearne prijemnike,dok drugi napajaju linearne prijemnike.
    Slika 5.2. Posebni transformatori za posebne vrste prijemnika
    Slika 5.2. Posebni transformatori za posebne vrste prijemnika
  • Odgovarajućim sprezanjem transformatora mogu se ograničiti viši harmonici. Sprega namotaja u trougao dovodi do blokiranja daljeg toka svih harmonika, koji su umnozak od 3. Unošenjem faznog pomeraja od 30 stepeni, sprezanjem sekundara transformatora u zvezdu i u trougao, dobija se efekat 12-pulsnog ispravljača, odnosno eliminišu se 5-ti i 7-mi harmonik.
        * Slika 5.3. Različito sprezanje namotaja utiče na eliminisanje pojedinih harmonica
    Slika 5.3. Različito sprezanje namotaja utiče na eliminisanje pojedinih harmonika


Uskoro u nastavku stručnog teksta: EES Kvalitet električne energije – viši harmonici (2):

  • Postavljanje filtera (pasivni, aktivni i hibridni)
  • Popravka faktora snage
  • Standardi i preporuke (u Francuskoj, Švedskoj, Australiji)
  • Standardi i preporuke međunarodne elektrotehničke komisije (IEC)



Dragan Simović
Dragan Simovic

Seminarski rad iz predmeta: Eksploatacija EES, tema: Kvalitet električne energije – viši harmonici
Visoka Škola Tehničkih Strukovnih Studija Čačak
Specijalističke Strukovne Studije Elektrotehnike i Računarstva | Modul Studijskog Programa: Elektroenergetika


Related articles